เรขาตณิตวิเคราะห์

เรขาคณิตวิเคราะห์ (Analytic Geometry) เป็นคณิตศาสตร์แขนงหนึ่งที่กล่าวถึงจุดบนระนาบ (point and plane)

เรขาคณิตวิเคราะห์จึงแบ่งได้ดังนี้

1. ระบบพิกัดฉาก ประกอบด้วยเส้นตรง สองเส้นเส้นหนึ่งอยู่ในแนวนอน เรียกว่า แกน x อีกเส้นหนึ่งอยู่ในแนวตั้งเรียกว่าแกน y ทั้งสองเส้นนี้ตัดกันเป็นมุมฉาก และเรียกจุดตัดว่า จุดกำเนิด y ควอดรันต์ที่ II ควอดรันต์ที่ I (-,+) (+,+) x ควอดรันต์ที่ III ควอดรันต์ที่ IV (-,-) (+,-) 2. การหาระยะทางระหว่างจุด 2 จุด ถ้า P(x1,y1) และ P(x2,y2) เป็นจุด 2 จุดในระนาบ ระยะทางระหว่างจุด P และจุด Q หาได้โดย

PQ =  (x2-x1)2 + (y2-y1) 2

3. จุดกึ่งกลางระหว่างสองจุด ถ้า P(x1,y1) และ P(x2,y2) เป็นจุด 2 จุดในระนาบและให้ M(x,y) เป็นจุดกึ่งกลางระหว่าง P และ Q เราสามารถหาจุด M ได้ดังนี้

จุดกึ่งกลาง M คือ x1+ x2 , y1+ y2 2 2

4. สมการของเส้นตรง Q(x2,y2) 4.1 ความชัน(slop)=tan=m

Q(x1,y1)

ความชัน = m = y2 – y1 x2 – x1

4.2 สมการเส้นตรงที่ผ่านจุด (x1,y1) และมีความชันเท่ากับ m คือ

y – y1 = m(x – x1)

4.3 สมการเส้นตรงที่มี y -intercept เท่ากับ b และมีความชันเท่ากับ m คือ

y = mx + b

4.4 จาก 4.2 และ 4.3 สามารถเขียนสมการเส้นตรงใหม่ในรูปของ

Ax + By + C = 0

ตัวอย่าง จงหาความชันของเส้นตรง 3x + 4y – 5 = 0 วิธีทำ 4y = -3x + 5 y = -(-3/4)x +(5/4)  ความชันคือ -3/4 4.5 เส้นตรง l1 ขนานกับ l2 ก็ต่อเมื่อ m1=m2 เส้นตรง l1 ตั้งฉากกับ l2 ก็ต่อเมื่อ m1m2 = -1

5. การหาระยะทางจากจุดไปยังเส้นตรง กำหนดให้ l เป็นเส้นตรงที่มีสมการ Ax + By + C = 0 และ P(x1,y1) เป็นที่อยู่นอกเส้น l ดังรูป

P(x1,y1) d l Ax + By + C = 0

ถ้า d เป็นระยะทางจากจุด P ไปยังเส้นตรง l

d = Ax1 + By1 + C  A2 + B2

Advertisements

เกี่ยวกับ bennuttoo

suporn chuaysiri 61 35,intira jampa 61 41,alisa klangwong 61 39
เรื่องนี้ถูกเขียนใน วิชาคณิตศาสตร์ และติดป้ายกำกับ คั่นหน้า ลิงก์ถาวร

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out /  เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out /  เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out /  เปลี่ยนแปลง )

Connecting to %s